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The boundary condition on an absorbing surface for the equation of particle 
diffusion is obtained from the approximate solution of the Fokker-Planck 
equation. 

One of the most complex problems associated with an analysis of finely dispersed flows 
is the calculation of particle deposition on surface exposed to the flow. Calculations for 
fine-particle deposition are usually accomplished on the basis of a diffusion equation (the 
Smoluchowski equation). This leads to a problem with the formulation of the boundary con- 
ditions at those surfaces on which the particles settle out. Particle deposition can also 
be calculated by solving an equation for the probability density of particle transition from 
one point in space to another (the Kolmogorov equation [i]). The boundary conditions for 
the equation of transition probability were obtained in [i, 2]; whence it follow, in partic- 
ular, that the density of transition probability on a totally absorbing wall is equal to 
zero. However, the mechanical transfer of the boundary conditions for the transition- 
probability density to the particle-concentration distribution is incorrect, since the 
concentration is determined by averaging the transition-probability density over all possi- 
ble particle trajectories. Therefore, particle concentration on a totally absorbing wall, 
unlike the transition-probability density, may not be equal to zero, as has been demonstrated 
in a numbered of references, for example [3, 4], by solution of the Fokker-Planck equation 
of particles. 

In solving the diffusion equations, we most often assume the particle concentration in 
the vicinity of an absorbing surface to be equal to zero, which is not always valid. On 
occasion, the particle concentration n w at a surface is assumed as given, which is a rather 
artificial approach, since n w (as well as the particle flow Jw through a wall) is the sought 
quantity and may change along the surface exposed to the flow. It is proposed in [5] to as- 
sign boundary conditions of the third kind 8n/By ~ (n - nw)//~ at some distance Y0 ~ "/~ 
from the wall, with D denoting the Brownian diffusion coefficient. A condition similar in 
form is derived in [6] from a model based on the equality between the diffusion particle 
flow from an external region and the inertial flow D(Sn/Sy) = Vyln/2= to a wall over the 
inertial run Yl, where D is the coefficient of Brownian and turbulent diffusion; Vyl is the 
mean particle velocity in the inertial region at the wall, sis that number of particles re- 
maining on the wall when the flow comes into contact with the wall. The boundary-value prob- 
lem for the particle-diffusion equation is also discussed in [7-10] as well as in other 
works. In this article, the boundary condition for the diffusion equation is obtained from 
the Fokker-Planckkinetic equation for particles. 

Particle motion in a nonuniform random field can be described by the Fokker-Planck 
equation for the distribution function in phase space f(t, x, v ). The Fokker-Planck equa- 
tion can be used to describe both the Brownian diffusion [3-5] and particle motion in the 
field of carrier-phase turbulent pulsations [ii]. Let us write this equation in the form 

o--7 + v~ Ox---~ + ~ G )  - -  (1) Ovh �9 Ov~ ~2 OVhOVh 

where t h e  t e rms  p r o p o r t i o n a l  t o  1/T d e s c r i b e  t h e  f o r c e  o f  t h e  i n t e r p h a s e  i n t e r a c t i o n  in  t h e  
Stokes approximation, while F k is the external force acting on the particle (for example, 
the force of gravity). The diffusion coefficient D in Eq. (i) is assumed to be dependent 
on x, i.e., consideration is given to the spatial nonuniformity of the pulsation field. 
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Having integrated Eq. (i) over the entire volume in velocity space, we obtain the equa- 
tion of continuity for particle concentration 

On OnVk 
b - - - - 0 ,  (2)  

Ot Oxh 

where the concentration and mean velocity of the particles are determined from the relation- 
ships 

n =  [rdv, v =  1 J'vtd,,. 

Having multiplied Eq. (i) by V i and integrating in the velocity space, we obtain the 
equation for particle motion 

OV~ OV~ 1 a (P~hn) __} Ui - -  Vi -4- F~, 
at § vh - (3) Oxh n Oxh 

where the stress tensor Pik is defined by the relationship 

p,~ = ! _  [ (v~ - ~)  (v~ - ~ )  ~d~. 
n J 

Assuming only a slight deviation of the system from local equilibrium, where in the first 
approximation we can neglect the left-hand side of Eq. (i), the distribution function f is 
described by the Maxwell distribution 

[o = 2~D ] nexp 2D ' (4)  

which satisfies the right-hand side of Eq. (I). 

Based on Eq. (4), Pik = D6ik/~, and Eq. (4) assumes the form of 

OVi + Vk OVi = 1 O(Dn) + Ui--V___________~i+F~. (5)  
Ot Oxh nT Oxi 

With D = const, Eq. (5) coincides with the equation for the Brownian motion of aerosol 
particles [12]. The term containing the gradient 8D/ax i describes the effect of particle 
migration in a nonuniform random flow [9, 13]. 

In the diffusion approximation ~D/s 2 << i it follows from Eq. (5) that 

V, = U, + ~Fi 1 O (Dn) (6) 
n ax, 

With consideration of Eq. (6), the continuity equation (2) assumes the form of the diffusion 
equation 

On + O O ~(Dn) 
Ot ~ [(Uk + l:Fh) n] = OxhOxk ( 7 ) 

To obtain the boundary condition for Eq. (7), let us construct a solution for Eq. (i) 
in the kinetic layer near the surface. We can retain those terms in Eq. (i) that apply 
to this layer and relate to the direction y of the projection onto the normal to the wall: 

_ al 0[ D 02[ OvJ ~v~ + (U v + ~Fu) 

Equation (8) is solved by the method of perturbations, where in order to obtain the 
boundary condition for Eq. (7), in addition to the first (Maxwell) approximation, it is necessary 
also to construct a second approximation. As the small parameter for this problem we can take the 
quantity r = V~/s equal to the ratio of the kinetic-layer thickness ~ to the characteristic di- 
mension of the region of variation for the average parameters in the direction s across the 
surface. Thus, the solution to Eq. (3) is presented in the form 
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[ =  [o + f~ + . . . .  ~-D-  nexp _ 2D / + [~ + .... 

where the function fx is determined from the following equation: 

D 02~1 OUV[1 - -  ~v u ~ + (Uy + ~:Fu) Ofo _ 

+ - ( 9 )  

= t - - ~  } %exp __ r dV 
2D ] -~y + ~ - -1 ,  -~y - - (U  u +-cFv ) ~  . 

A s o l u t i o n  f o r  Eq. (9) i s  g iven  by 

~3 ,/2 ~v i ) dn n 1 + "~ vg (U v -t- ~F u) �9 
[ 1 = - -  ~ vvexp _ _ ~  ] dy + 2D "-~ dy 

Thus, the solution for Eq. (8) in the second approximation is of the form 

[ =  ~ nexp , 2 D ]  D vy D dy + \  2 6D v~ ~ y  . (10) 

On the  b a s i s  o f  s o l u t i o n  (10 ) ,  l e t  us de te rmine  the  p a r t i c l e  f lows J i n c  i n c i d e n t  on 
t h e  wa l l  and J r e f  r e f l e c t e d  from the  w a l l :  

d ine=__  vv[dvv = D I/2 n +  1__ dDn (Uv + ~Fv) T ' 
-. 2 dy 

( D ~l/2 1 dDn n 
: r e f =  [ vJdvv = \ ~ ] n + (Uv + ~Fv) - -  (12) 

b 2 dy 2 

Al l  of  the  q u a n t i t i e s  in Eqs. ( l l )  and (12) co r r e spond  to  t h e i r  v a l u e s  a t  the  wa l l  
(y = 0) .  We w i l l  c h a r a c t e r i z e  the  s u r f a c e  p r o p e r t i e s  by the  r e f l e c t i o n  c o e f f i c i e n t  X which 
i s  equa l  to  the  p r o b a b i l i t y  t h a t  a p a r t i c l e ,  having reached  t he  w a l l ,  w i l l  break  away from 
th e  w a l l  ( i . e . ,  t he  r e t u r n  i n to  t he  f low of  a p a r t i c l e  having c o l l i d e d  wi th  the  w a l l ) ;  he re  
a = i -- X is the probability that the particle will adhere to the wall (i.e., to leave the 
flow). Consequently, the coefficient X is equal to the ratio of the particle flows reflec- 
ted from and incident on the surface: 

z : 4ed%nc" (13) 

Having substituted (ll) and (12) into (13), we obtain the following boundary condition 
for the particle-diffusion equation: 

' dn  ) / dD \ 

+ o ( 14) 
--(U u + "rF,j) n~] (1 + X) 

/ 

J t ' I  I/2 

where Jw =dinc - Jref" 

The terms in brackets in (14) define, respectively, the diffusion, migration, and con- 
vection particle flows at the surface. 

The boundary condition for a completely absorbing surface is obtained from (14), where 
X = 0. For the reflecting surface (impermeable to the particles), the boundary condition 
assumes the form (X = i) 

I" dDn \ 
Jw = O or k ay / |---72-- ]w = (Uv +TFv)w lh':" 

It follows from (14) that the boundary condition n w = 0 so popular in the literature 
is valid when e/(l - X) << i. 
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NOTATION 

v is the particle velocity; u mean particle velocity; u , velocity of the medium; T, 
time of dynamic particle relaxation; n, particle concentration; s characteristic dimen- 
sion. Indices: w denotes the parameter at the wall. 
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EFFECTS OF VISCOUS DISSIPATION AND JOULE HEAT ON HEAT 

TRANSFER NEAR A ROTATING DISK IN THE PRESENCE OF INTENSIVE 

SUCTION 

V. D. Borisevich and E. P. Potanin UDC 532.52.526.75:536.24.01 

Heat transfer in the bounday layer of an electrically conducting incompressi- 
ble liquid near a disk rotating in an axial magnetic field is investigated 
for the case of intensive, uniform suction. The thermal flux intensity near 
the disk surface is determined in relation to the magnetic field strength 
and the rotation speed of the disk with an allowance for the viscous and the 
Joule dissipation. 

The characteristics of the hydrodynamic and the thermal boundary layers at a rotating 
unbounded permeable disk were calculated in [i, 2] by integrating the equations of motion 
and energy with averaged convective terms while neglecting the viscous dissipation. Heat 
transfer near a disk rotating in a conducting medium within an axial magnetic field was 
considered in the absence of suction [3] and in the case of strong suction [4], using a 
similar nondissipativeapproximation. We have considered the effect of viscous dissipation 
and of the Joule heat on heat transfer in the magnetohydrodynamic boundary layer at a per- 
meable dielectric disk rotating in an electrically conducting incompressible, viscous medi- 
um. Let us assume that the difference between the temperature in the main flow and the disk 
temperature is relatively small [2]. We assume in accordance with [i, 2] that w = w0 - k. 
Then, if condition k >> w 0 is satisfied, we have the following for the thermal boundary 
layer at the disk: 
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